How to measure uncertainty in uncertainty sampling for active learning
نویسندگان
چکیده
Abstract Various strategies for active learning have been proposed in the machine literature. In uncertainty sampling, which is among most popular approaches, learner sequentially queries label of those instances its current prediction maximally uncertain. The predictions as well measures used to quantify degree uncertainty, such entropy, are traditionally a probabilistic nature. Yet, alternative approaches capturing learning, alongside with corresponding measures, recent years. particular, some these seek distinguish different sources and separate types reducible (epistemic) irreducible (aleatoric) part total prediction. goal this paper elaborate on usefulness compare their performance learning. To end, we instantiate sampling analyze properties thus obtained, them an experimental study.
منابع مشابه
Uncertainty Sampling-Based Active Selection of Datasetoids for Meta-learning
Several meta-learning approaches have been developed for the problem of algorithm selection. In this context, it is of central importance to collect a sufficient number of datasets to be used as metaexamples in order to provide reliable results. Recently, some proposals to generate datasets have addressed this issue with successful results. These proposals include datasetoids, which is a simple...
متن کاملHow to process uncertainty in machine learning?
Uncertainty is a popular phenomenon in machine learning and a variety of methods to model uncertainty at different levels has been developed. The aim of this paper is to motivate the merits and problems when dealing with uncertainty in machine learning and to give an overview about methodologies which fall under the framework of neurofuzzy methods, in particular fuzzy-clustering on the one side...
متن کاملUncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1
In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...
متن کاملHeterogenous Uncertainty Sampling for Supervised Learning
Uncertainty sampling methods iteratively request class labels for training instances whose classes are uncertain despite the previous labeled instances. These methods can greatly reduce the number of instances that an expert need label. One problem with this approach is that the classifier best suited for an application may be too expensive to train or use during the selection of instances. We ...
متن کاملHeterogeneous Uncertainty Sampling for Supervised Learning
Uncertainty sampling methods iteratively request class labels for training instances whose classes are uncertain despite the previous labeled instances. These methods can greatly reduce the number of instances that an expert need label. One problem with this approach is that the classifier best suited for an application may be too expensive to train or use during the selection of instances. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2021
ISSN: ['0885-6125', '1573-0565']
DOI: https://doi.org/10.1007/s10994-021-06003-9